BRILLIANCE: A Phase 1/2 Single Ascending Dose Study of EDIT-101, an *in vivo* CRISPR Gene Editing Therapy in CEP290-Related Retinal Degeneration

September 29, 2021
Forward Looking Statements

This presentation contains forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “target,” “should,” “would,” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements in this presentation include statements regarding the initiation, timing, progress and results of the Company’s preclinical and clinical studies and its research and development programs, including the safety and efficacy of EDIT-101 and the application of results achieved in the study to any future studies, the timing for the Company’s receipt and presentation of additional data from its clinical trials and preclinical studies, the timing or likelihood of regulatory filings and approvals, and the therapeutic value, development, and commercial potential of the Company’s gene editing technologies. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: uncertainties inherent in the initiation and completion of pre-clinical studies and clinical development of the Company’s product candidates; availability and timing of results from pre-clinical studies and clinical trials; whether interim results from a clinical trial will be predictive of the final results of the trial or the results of future trials; expectations for regulatory approvals to conduct trials or to market products and availability of funding sufficient for the Company’s foreseeable and unforeseeable operating expenses and capital expenditure requirements. These and other risks are described in greater detail under the caption “Risk Factors” included in the Company’s most recent Annual Report on Form 10-K, which is on file with the Securities and Exchange Commission, as updated by the Company’s subsequent filings with the Securities and Exchange Commission, and in other filings that the Company may make with the Securities and Exchange Commission in the future. Any forward-looking statements contained in this presentation represent Company’s views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date. Except as required by law, the Company explicitly disclaims any obligation to update any forward-looking statements.
Agenda

Introduction

Overview of LCA10 and CEP290-Related Retinal Degeneration

Overview of EDIT-101

Phase 1/2 Brilliance Trial

Safety Assessments

Efficacy Assessments

Summary

SPEAKERS:

James Mullen
Chairman & CEO, Editas Medicine

Lisa A. Michaels, M.D.
Chief Medical Officer, Editas Medicine

Mark Shearman, Ph.D.
Chief Scientific Officer, Editas Medicine

Eric A. Pierce, M.D., Ph.D.
Director of the Ocular Genomics Institute at Massachusetts Eye and Ear
Professor of Ophthalmology, Harvard Medical School
Principal Investigator, BRILLIANCE Clinical Trial
EDIT-101 Timeline

**Editas Medicine Initiates Clinical Natural History Study to Evaluate Patients with Leber Congenital Amaurosis Type 10 (LCA10)**

Edited in U.S. with respect to the color blindness of the patient.

**EDIT-101 Timeline**

**Ocular Genomics Institute**

**Sept. 11, 2017**
Massachusetts Eye and Ear named as first site for the study

**September 12, 2017**
(CBNS NEWSWIRE) — Editas Medicine, Inc. (Nasdaq:EDIT), a leading genome editing company, today announced that the company initiated a clinical natural history study of Leber Congenital Amaurosis type 10 (LCA10). LCA10 is caused by mutations in the CEP290 gene. The study will prospectively evaluate patients to assess the course of the disease and to plot potential clinical trial endpoints and designs. This knowledge will inform the international clinical trial design for EDIT-101. Editas Medicine is a pre-clinical product candidate to treat LCA10.

**Editas & Allergan Dose First Patient in Phase III Historic Gene Editing Study — Accomplished via In Vivo Treatment**

**TODAY**

**September 29, 2021**
Editas Medicine Presents Clinical Data on First In Vivo Gene Editing Treatment for LCA10

**EDIT-101 Timeline**

**TODAY**

**Editas Medicine to develop new class of genome editing therapeutics**

**2014**

**Broad Institute awarded first patent for engineered CRISPR-Cas9 system**

**EDIT-101 Timeline**

**TODAY**

**2020 Nobel Prize in Chemistry**

**A tool for genome editing: CRISPR-Cas9**

**Blind Patients Hope Landmark Gene-Editing Experiment Will Restore Their Vision**

**EDIT-101 Timeline**

**TODAY**
Key Findings & Acknowledgements

Initial Observations

EDIT-101 was associated with no serious adverse events (AE) or dose-limiting toxicities (DLT) to date.

Early efficacy signals in the mid-dose cohort suggest positive biological activity and potential early clinical benefits.

Thank You

Editas Medicine extends utmost gratitude to all trial participants and their families for their trust and support.

Thank you to all investigative sites for your partnership and ongoing collaboration.

Massachusetts Eye and Ear Infirmary*
Boston, Massachusetts

W.K. Kellogg Eye Center - University of Michigan
Ann Arbor, Michigan

Casey Eye Institute - OHSU*
Portland, Oregon

Bascom Palmer Eye Institute
Miami, Florida

*Primary Surgical Sites
CEP290-Related Retinal Degeneration & EDIT-101
CEP290-Related Retinal Degeneration
A Rare Cause of Early Onset Loss of Vision

Currently No Approved Treatments for CEP290-related Retinal Degeneration

- CEP290-related retinal degeneration causes progressive vision loss/blindness in children within the first decade of life\(^1,2\)
- Autosomal recessive disease
- Disease characterized by early loss of photoreceptors in the eye
- Focal cone rich area of the retina in the area of the fovea however remains intact until adulthood, which provides the opportunity for gene correction

Cross-sectional OCT scans along the horizontal meridian through the fovea in a normal subject, a CEP290-LCA patient, ONL (outer nuclear layer) is highlighted in purple

\(^2\) Weleber RG. LCA Gene Reviews 2013
Impact of CEP290-Related Degeneration on Patients

**DISEASE SYMPTOMS**
- Blindness usually diagnosed in infancy or early childhood
- Severely impaired visual acuity
- Loss of peripheral vision
- Night blindness
- Rapid, involuntary eye movements (nystagmus)

**PATIENT IMPACT**
- Inability to adequately navigate enclosed spaces
- Risk of falls and injury
- Inability to be mobile or independently use public transportation
- Constrained social function
- Impaired academic performance
- Challenges with employment

**PATIENT RETINA & VISION**
- **NORMAL**
- **CEP290**
The IVS26 Mutation in CEP290 is a Clearly Defined Target for Gene Editing

CEP290-Related Retinal Degeneration

EDIT-101

Gene Editing Therapeutic Concept

DNA

Exon 26

IVS26

G

Exon 27

mRNA

Exon 26

* Exon 27

Protein

p.Cys998X prematurely truncated and non-functional CEP290

No Protein trafficking

U6

323

U6

gRNA A

gRNA B

SaCas9

SaCas9

Protein trafficking

Full-length, functional CEP290

2991+1655A>G mutation in CEP290 corrected

SaCas9

Kozak-ATG

SV40

SD/SA

hGRK

323

EDIT-101


© 2021 Editas Medicine
EDIT-101 Allows for Local Delivery of the Editing Complex to Specifically Target the Photoreceptors to be Corrected

AAV5 encoding two gRNAs and SaCas9 delivered subretinally as a single administration

EDIT-101 CRISPR-Cas9 gene editing

Adeno-Associated Virus (AAV)

EDIT-101 specifically targets the part of the retina where viable photoreceptors are found

- Photoreceptor-tropic AAV5 vector
- Highly specific Guide RNAs
- Restricted Cas9 expression in Photoreceptor Cells
- Local delivery to subretinal space limits the risk of biodistribution outside of the eye

Subretinal injection to para-fovea region

Overview of Data Presentation

Data collection cutoff date: August 4, 2021

• Safety data include all subjects in the adult low and mid dose cohorts (N=6).

• Efficacy data include all treated subjects with at least 3 months of post treatment follow-up (N=5).

• Topline efficacy data are focused on reliable and confirmed efficacy measures* that are clinically relevant to CEP290-related retinal degeneration.

• Due to the limited number of subjects and differential follow-up, the efficacy findings are presented individually.
## Natural History Study Assessments

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Endpoints</th>
<th>Category</th>
<th>Reliability</th>
<th>Stability 1 year Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical coherence tomography (OCT)</td>
<td>Thickness of the outer nuclear layer (ONL) and integrity of the ellipsoid zone</td>
<td>Anatomic</td>
<td>🎨</td>
<td>🎨</td>
</tr>
<tr>
<td>Pupillometry</td>
<td>Pupil size, pupil constriction</td>
<td>Physiologic</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Oculomotor control and instability (OCI)</td>
<td>Gaze tracking</td>
<td>Physiologic</td>
<td>🎨</td>
<td>🎨</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>logMAR measurement of best-corrected visual acuity (BCVA)</td>
<td>Visual Function</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Full field light sensitivity threshold (FST)</td>
<td>Dark adapted visual sensitivity to white, red, and blue light</td>
<td>Visual Function</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Contrast sensitivity+</td>
<td>LogMAR measurement of contrast sensitivity</td>
<td>Visual Function</td>
<td>🎨</td>
<td>🎨</td>
</tr>
<tr>
<td>Microperimetry+</td>
<td>Macular sensitivity</td>
<td>Visual Function</td>
<td>🎨 x</td>
<td>🎨 x</td>
</tr>
<tr>
<td>Kinetic perimetry</td>
<td>Visual field</td>
<td>Visual Function</td>
<td>🎨 x</td>
<td>🎨 x</td>
</tr>
<tr>
<td>Color vision+</td>
<td>Farnsworth 15 score</td>
<td>Visual Function</td>
<td>🎨</td>
<td>🎨</td>
</tr>
<tr>
<td>Quality of Life (QoL)</td>
<td>QoL questionnaire (CVFQ; NEI VFQ-25)</td>
<td>Patient Reported Outcomes</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

** Natural history study is being conducted to assess and define reproducible results of visual navigation challenge (VNC) evaluation.
EDIT-101 Observations

EDIT-101 for the treatment of CEP290-related retinal degeneration is the first clinically investigated in vivo CRISPR gene editing therapy.

To date, no dose-limiting toxicities or serious adverse events have been reported in the six adult subjects treated with the low and mid doses of EDIT-101.

Early efficacy signals in the mid dose cohort suggest positive biological activity and potential early clinical benefits.

High dose adult cohort is currently ongoing with no DLTs or SAEs observed to date.

Pediatric mid dose cohort is currently enrolling.
Brilliance Trial
BRILLIANCE Phase 1/2, Open-label, Single Ascending Dose Study (NCT03872479)

Cohort | Screening Baseline | 12 Months Following Single Sub-Retinal Treatment* in Worse Eye | 2 Year Extension with Option for 12 Years of Follow-up
--- | --- | --- | ---
1 | Adult Low Dose (6x10^{11} vg/ml) | N = 2 |  
2 | Adult Mid Dose (1.1x10^{12} vg/ml) | N = 4 |  
3 | Adult High Dose (3.0x10^{12} vg/ml) | N = 4 |  
4 | Pediatric Mid Dose (1.1x10^{12} vg/ml) | N = 4 |  
5 | Pediatric High Dose (3.0x10^{12} vg/ml) | N = 4 |  

Primary Objective: Safety Designed to Define Target Dose (MTD)

Secondary Objective: Tolerability & Efficacy

* Independent Data Monitoring Committee Review
## Eligibility Criteria

### Key Inclusion Criteria

- Adults aged 18 years or older in cohorts 1-3
- Pediatric and adolescent subjects aged 3 up to 17 years
- A clear genetic diagnosis of CEP290-associated retinal degeneration; being at least heterozygous for the c.2991+1655A>G mutation in CEP290

### Key Exclusion Criteria

- Other known disease-causing mutations detected in other retinal degeneration disease genes
- Able to pass the Visual Navigation Course at the highest level of difficulty
- Cataract surgery in the last 3 months
- Active ocular/intraocular infection or inflammation
- History of steroid-responsive intraocular pressure increase
- Inability or unwillingness to take oral prednisone
- Prior gene therapy or oligonucleotide treatment

### Cohort 1

- Light Perception, Black White Discrimination, or White Field Projection

### Cohort 2-5

- **First Subject in Each Cohort**
  - Light Perception to 1.6 logMar (20/800 Snellen)

- **Subsequent Subjects**
  - Light Perception to 0.4 logMar (20/50 Snellen)
## Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th></th>
<th>Cohort 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1-P1*</td>
<td>C1-P2</td>
<td>C2-P1</td>
<td>C2-P2</td>
<td>C2-P3</td>
<td>C2-P4</td>
</tr>
<tr>
<td><strong>Age</strong></td>
<td>50</td>
<td>42</td>
<td>54</td>
<td>20</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td><strong>Sex</strong></td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td><strong>Race/Ethnicity</strong></td>
<td>Caucasian</td>
<td>Caucasian</td>
<td>Caucasian</td>
<td>Hispanic</td>
<td>Caucasian</td>
<td>Caucasian</td>
</tr>
<tr>
<td><strong>Genotype</strong></td>
<td>Heterozygous</td>
<td>Heterozygous</td>
<td>Homozygous</td>
<td>Heterozygous</td>
<td>Heterozygous</td>
<td>Heterozygous</td>
</tr>
<tr>
<td><strong>Trial Duration (months)</strong></td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td><strong>BCVA Study Eye (logMar)</strong></td>
<td>3.5</td>
<td>3.9</td>
<td>2.7</td>
<td>1.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td><strong>BCVA CL Eye (logMar)</strong></td>
<td>3.5</td>
<td>3.9</td>
<td>2.3</td>
<td>1.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

*Subject unable to return to study site for follow-up visits due to COVID.*
Assessment of Safety in Brilliance

Evaluations of Safety

- Dose-limiting toxicities (DLTs) resulting in significant vision loss
- Non-ocular AEs
- Treatment-related AEs
- Procedure-related AEs

Definition

Vision-Threatening Toxicity

$\downarrow$ BCVA by $\geq 0.6$ logMAR

Loss of light perception (2 consecutive visits)
Corticosteroid-unresponsive inflammation ($\geq 4$ weeks)

Severe Non-Ocular AE
Safety Summary

- No DLTs or SAEs observed to date in first two cohorts.
- To date, no treatment-related cataracts, edema, or retinal thinning have been observed.
- Most frequently reported AE was eye pain in 4 subjects (1 low dose and 3 mid dose) related to the surgical procedure.
- Only mild cases of treatment-related inflammation have been reported.
- No Cas9-specific antibody detected.
- IDMC safety review allows enrollment of pediatric subjects into the mid dose cohort.

### AE Summary

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 Adult Low Dose (n=2)</th>
<th>Cohort 2 Adult Mid Dose (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEs</td>
<td>26 (22 Mild; 4 Moderate)</td>
<td>25 (23 Mild; 2 Moderate)</td>
</tr>
<tr>
<td>Ocular AEs</td>
<td>22 (18 Mild; 4 Moderate)</td>
<td>9 (9 Mild)</td>
</tr>
<tr>
<td>AEs Related to EDIT-101</td>
<td>8 (6 Mild; 2 Moderate)</td>
<td>3 (3 Mild)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DLTs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
## Efficacy Assessment Overview

**Reliable and Confirmed Efficacy Measures that are Clinically Relevant to CEP290 Retinal Degeneration**

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Endpoints</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual acuity</td>
<td>logMAR measurement of best-corrected visual acuity (BCVA)</td>
<td>Visual Function</td>
</tr>
<tr>
<td>Full field light sensitivity threshold (FST)</td>
<td>Dark adapted visual sensitivity to white, red, and blue light</td>
<td>Visual Function</td>
</tr>
</tbody>
</table>
Visual Acuity Test

Best Corrected Visual Acuity (BCVA)

Able to read letters

OR

Unable to read letters

BCVA 20/800 or Worse in at least one eye

Early Treatment Diabetic Retinopathy Study (ETDRS)/logMAR Visual acuity

Lea Symbols 15-line Pediatric Eye Chart

Berkeley Rudimentary Visual Test (BRVT)
Full Field Light Sensitivity Threshold Test (FST)

Well-established tool for testing **retinal sensitivity** in low vision patients

Measures the point of greatest sensitivity across the entire visual field by testing for lowest luminance flash which elicits visual sensation (**visual sensitivity**)

Blue, red, and white stimuli to assess **rod/cone/mixed sensitivity**
Subjects progress through the courses left to right, decreasing in difficulty; within each course illumination increases left to right.

Four different courses with decreasing difficulty to assess relative levels of visual function:

- **LOW CONTRAST VISUAL NAVIGATION CHALLENGE (LCVNC)**
  - Low Contrast Path
  - Multiple Turns
  - Numerous Obstacles
  - 8 Illumination Levels
  - VNC Level Score 14 to 21

- **HIGH CONTRAST VISUAL NAVIGATIONS CHALLENGE (HCVNC)**
  - High Contrast Path
  - Wider Path with Turns
  - High Contrast Obstacles
  - 8 Illumination Levels
  - Score 6 to 13

- **HIGH CONTRAST ROOM EXIT (HCRE)**
  - High Contrast Path
  - No Turns
  - High Contrast Obstacles
  - 3 Illumination Levels
  - Score 3 to 5

- **BACKLIT ROOM EXIT (BRE)**
  - Illuminated Path
  - No Turns
  - Illuminated Obstacles
  - 2 Illumination Levels
  - Score 1 to 2

BETTER VISION / WORSE VISION:

VNCTM Developed by Ora Clinical
Cohort 1 (Low Dose) Subject 1

Indeterminant Changes in BCVA, FST or Visual Navigation

Efficacy data up to 6 months as patient unable to return for follow-up visits due to COVID

- BCVA
- FST
- Navigation
Cohort 1 (Low Dose) Subject 2
Variable Data Outcomes for BCVA and Visual Navigation
Unable to detect FST thresholds

Change from baseline

BCVA

Time
BL M1.5 M3 M6 M9
Change in BCVA (LogMAR)
-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9
Study Eye
CL Eye

Navigation

Time
BL M1.5 M3 M6 M9
More Difficult Change in Mobility (Levels)
-4.0 -2.0 0.0 2.0 4.0 6.0
Study Eye
CL Eye

Cohort 1 (Low Dose) Subject 2
Variable Data Outcomes for BCVA and Visual Navigation
Unable to detect FST thresholds

Change from baseline

BCVA

Time
BL M1.5 M3 M6 M9
Change in BCVA (LogMAR)
-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9
Study Eye
CL Eye

Navigation

Time
BL M1.5 M3 M6 M9
More Difficult Change in Mobility (Levels)
-4.0 -2.0 0.0 2.0 4.0 6.0
Study Eye
CL Eye
Cohort 2 (Mid Dose) Subject 1

Early Signals of Productive Gene Editing and Clinical Efficacy

Early changes by month 3 with sustained or further improvements in BCVA, FST, and VNC by month 6

- Change in BCVA (LogMAR)
- Change in FST (Log cd/m²)
- Change in Mobility (Levels)

*M3 missing navigation due to leg injury.
Improved ability to navigate visual navigation course over time in the study eye

Baseline
HCVNC Course at 500 lux  
Fail

Month 6
HCVNC Course at 63 lux  
Pass

“I can see lines more clearly now. I have been able to find things on the floor with my eyes sometimes. This is not all the time, but I have been able to notice objects on the floor more than before the treatment. I am also able to see doorways more easily at work.”
Cohort 2 (Mid Dose) Subject 2

Early Signals of Efficacy Based on FST Assessment

*Early changes by month 3 with more pronounced improvements observed in FST*

![Graphs showing BCVA, FST, and Navigation changes over time for Study Eye and CL Eye.](image-url)
Cohort 2 (Mid Dose) Subject 3
Indeterminant Clinical Improvements Up To 3 Months

BCVA

FST

Navigation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>M1.5</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>M3</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Change in BCVA (LogMAR)</th>
<th>Change in FST (Log cd/m²)</th>
<th>More Difficult Change in Mobility (Levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>M1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>M3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Efficacy Summary

Early analysis showed **2 of the 3 subjects** in the mid dose cohort followed for up to 6 months **showed efficacy signals**

**Mid Dose Cohort Subject 1**
Early changes by month 3 with sustained or further improvements in BCVA, FST, and VNC by month 6

**Mid Dose Cohort Subject 2**
Early changes by month 3 with more pronounced improvements observed in FST
EDIT-101 for the treatment of CEP290-related retinal degeneration is the first clinically investigated in vivo CRISPR gene editing therapy.

**SAFETY**

To date, no DLTs or serious AEs have been reported in the first six adult subjects treated with the low or mid doses of EDIT-101.

**EFFICACY**

Early efficacy signals in the mid dose cohort suggest positive biological activity and potential early clinical benefits.

High dose adult cohort is currently ongoing with no DLTs or SAEs observed to date.

Pediatric mid dose cohort is currently enrolling.
Acknowledgements

Thank you to participating patients, their families, and clinical investigators for your support.

- Mark Pennesi
  Casey Eye Institute
  OHSU
  Portland, Oregon

- Thiran Jayasundera
  W.K. Kellogg Eye Center
  University of Michigan
  Ann Arbor, Michigan

- Eric Pierce
  Massachusetts Eye and Ear (MEE)
  Harvard Medical School
  Boston, Massachusetts

- Byron Lam
  Bascom Palmer Eye Institute
  Miami, Florida

MEE and OHSU are Primary Surgical Sites
Thank You & Questions
Viral Shedding and Neutralizing Antibodies

Transient viral shedding in blood and tears, approaching clearance around Day 7
No Cas9-specific antibody or T-cell response detected; AAV5-specific antibody detected in some subjects; No correlation with observed inflammation
Editing Corrects CEP290 Splicing, Restoring mRNA and Protein Expression in Fibroblasts of Patients with the 2991+1665A>G Mutation

CEP290 mRNA expression

CEP290 protein expression

Patient 1

Patient 2
Clinical EDIT-101 Dose Selection

Based on Dose Response Studies in HuCEP290-IVS26 KI Transgenic Mice & Non-Human Primates

Studies conducted in NHP with surrogate guide RNAs confirmed that EDIT-101 is expected to achieve ~30% productive editing at a dose of $1 \times 10^{12}$ vg/ml.

Comparable dose ranges in a clinical setting anticipated to have clinically meaningful and robust productive editing.
## Ocular Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th></th>
<th>Cohort 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult Low Dose</td>
<td>Adult Mid Dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N=2)</td>
<td>(N=4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Pain</td>
<td>1 (50%)</td>
<td></td>
<td>3 (75%)</td>
<td></td>
</tr>
<tr>
<td>Photophobia</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conjunctival Hyperemia</td>
<td>1 (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctival Edema</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conjunctival Hemorrhage</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Eye Pruritus</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Retinal Tear</td>
<td>0</td>
<td></td>
<td>2 (50%)</td>
<td></td>
</tr>
<tr>
<td>Hypotony of Eye</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Retinal Hemorrhage</td>
<td>0</td>
<td></td>
<td>1 (25%)</td>
<td></td>
</tr>
<tr>
<td>Subretinal Fluid</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lens Subluxation</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anterior Chamber Inflammation</td>
<td>1 (50%)</td>
<td></td>
<td>1 (25%)</td>
<td></td>
</tr>
<tr>
<td>Anterior Chamber Cell</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vitreal Cell</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Subretinal Infiltrates/RPE Disruption</td>
<td>1 (50%)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Most reported AEs were mild and related to the surgical procedures and subretinal injection associated with EDIT-101 administration